Genetic resistance and silicon in the control of stem rot in Capsicum spp.

Authors

  • Bruno Arcanjo Silva Postgraduate Program in Agronomy, Federal University of Piaui - UFPI, Teresina, PI, Brazil. https://orcid.org/0000-0002-2473-7416
  • Lorenna Leal Pires Postgraduate Program in Agronomy, Federal University of Piaui - UFPI, Teresina, PI, Brazil. https://orcid.org/0000-0002-8671-3022
  • José Evando Aguiar Beserra Jr Postgraduate Program in Agronomy, Federal University of Piaui - UFPI, Teresina, PI, Brazil.

DOI:

https://doi.org/10.18011/bioeng.2024.v18.1115

Keywords:

Capsicum, Genetic Control, Sclerotium delphinii, Sodium Silicate

Abstract

Pepper stem rot is a disease caused by Sclerotium delphinii, a necrotrophic pathogen and a natural soil inhabitant. Identifying genotypes of Capsicum resistant to the pathogen and applying silicon (Si) can be effective management measures. The objective of the study was to identify sources of resistance in 24 accessions of Capsicum spp. against S. delphinii, and to evaluate the potential of sodium silicate (Si) to induce resistance. Two experiments were conducted: In Experiment I, the resistance reaction of Capsicum in a greenhouse was evaluated. The experiment was conducted in two periods of the year (July and November 2019). In Experiment II, the effect of Si on Capsicum resistance was evaluated. The experimental design used in Experiment I employed randomized blocks in a factorial design of 2 (isolates) x 24 (accessions), with five replications. For Experiment II, six accessions were selected with contrasting resistance responses observed in Experiment I, in a factorial design of 1 (isolate) x 6 (accessions) x 4 (doses: 0.0, 0.025, 0.05, and 0.1 mL per vase). Accessions BGH 71 and BAGC 134 showed greater resistance to the pathogen. Accession BAGC 134 demonstrated high resistance stability in both periods and against the two isolates tested. Si doses had no significant effect on the resistance reaction. Therefore, the genotypes BGH 71 and BAGC 134 have the potential to be used in breeding programs for Capsicum for resistance to S. delphinii for control of stem rot.

Downloads

Download data is not yet available.

References

Bedendo, I. P. (2018). Podridões de raiz e colo. In L. Amorim, A. Bergamin Filho, & J. A. M. Rezende. Manual de Fitopatologia: Princípios e conceitos. Ed. Agronômica Ceres, v. 1, 5ª ed., cap. 24.

Bélanger, R. R., Benhamou, N., Menzies, J. G. (2003). Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici). Phytopathology, 93, 402-412. DOI: https://doi.org/10.1094/PHYTO.2003.93.4.402

Bergamin Filho, A., & Amorim, L. (2018). Princípios gerais de controle. In Amorim, A. Bergamin Filho, & J. A. M. Rezende. Manual de Fitopatologia: Princípios e conceitos. Ed. Agronômica Ceres, v.1, 5ª ed., cap. 14.

Carvalho, S. I. C., Bianchetti, L. B., Bustamante, P. G., Silva, D. B. (2003). Catálogo de germoplasma de pimentas e pimentões (Capsicum spp.) da Embrapa Hortaliças. Brasília, DF: Embrapa Hortaliças, 49 p.

Datnoff, L. E., Rodrigues, F. A., Seebold, K. W. (2007). Silicon and plant disease. In: Datnoff, L. E., Elmer, W. H., Huber, D. M. Mineral nutrition and plant disease. St. Paul: The American Phytopathological Society Press, p. 233-246.

Duarte, M. L. R., Lima, W. G., Chu, E. Y., Konagani, M., Albuquerque, F. A. B. (2006). Controle da podridão das raízes da pimenteira-do-reino com diferentes bokashi. Belém, PA: Embrapa Amazônia Oriental. Comunicado Técnico, nº 168, 41p.

El-Samman, M. G. (2000). The role of soluble silicon in controlling some root rot diseases of cucumber and tomato. Annals of Agricultural Sciences, 4, 1411-1419.

Fernandes, C. F., Vieira Junior, J. R., Silva, D. S. G., Reis, N. D., Antunes Junior, H. (2009). Mecanismos de defesa de plantas contra o ataque de agentes fitopatogênicos. Porto Velho, RO: Embrapa Rondônia, 14p. (Documentos/Embrapa Rondônia; 133).

French-Monar, R. D. Rodrigues, F. A., Korndorfer, G. H., Datnoff, L. E. (2010). Silicon suppresses Phytophthora blight development on bell pepper. Journal of Phytopathology 158(7-8), 554-560. https://doi.org/10.1111/j.1439-0434.2009.01665.x DOI: https://doi.org/10.1111/j.1439-0434.2009.01665.x

Garcia, R. A.; Juliatti, F. C. (2012). Avaliação da resistência da soja a Sclerotinia sclerotiorum em diferentes estádios fenológicos e períodos de exposição ao inóculo. Tropical Plant Pathology, 37(3),196-203. https://doi.org/10.1590/S1982-56762012000300006 DOI: https://doi.org/10.1590/S1982-56762012000300006

IBGE, 2020. Disponível em: https://sidra.ibge.gov.br/tabela/5457#resultado. Acess: 21 jan. 2022.

Jayawardana, H. A. R. K., Weerahewa, H. L. D., Saparamadu, M. D. J. S. (2015). Enhanced resistance to anthracnose disease in chili pepper (Capsicum annuum L.) by amendment of the nutrient solution with silicon. Journal of Horticultural Science and Biotechnology, 90(5), 557-562. https://doi.org/10.1080/14620316.2015.11668714 DOI: https://doi.org/10.1080/14620316.2015.11668714

Jayawardana, H. A. R. K., Weerahewa H. L. D., Saparamadu M. D. J. S. (2014). Effect of root or foliar application of soluble silicon on plant growth, fruit quality and anthracnose development of Capsicum. Tropical Agricultural Research, 26(1), 74-81. http://doi.org/10.4038/tar.v26i1.8073 DOI: https://doi.org/10.4038/tar.v26i1.8073

Lorenzo, O., Piqueras, R., Sánchez-Serrano, J. J., Solano, R. (2003). ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell, 15(1), 165‐178. http://doi.org/10.1105/tpc.007468 DOI: https://doi.org/10.1105/tpc.007468

Mahadevakumar, S., Chandana, C., Deepika, Y. S., Sumashri, K. S., Yadav, V., Janardhana, G. R. (2018). Pathological studies on the southern blight of China aster (Callistephus chinensis) caused by Sclerotium rolfsii. European Journal of Plant Pathology, 151(4), 1081-1087. https://doi.org/10.1007/s10658-017-1415-2 DOI: https://doi.org/10.1007/s10658-017-1415-2

McKinney, H. H. (1923). Influence of soil, temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. Journal of Agricultural Research, 26(5), 195-217.

Müller, M., Munné-Bosch, S. (2015). Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiology, 169(1), 32-41. http://doi.org/10.1104/pp.15.00677 DOI: https://doi.org/10.1104/pp.15.00677

Moraes, S. R. G.; Pozza, E. A.; Alves, E.; Pozza, A. A. A.; Carvalho, J. G.; Lima, P. H.; Botelho, A. O. (2006). Efeito de fontes de silício na incidência e na severidade da antracnose do feijoeiro. Fitopatologia Brasileira, 31(1), 69-75. https://doi.org/10.1590/S0100-41582006000100012 DOI: https://doi.org/10.1590/S0100-41582006000100012

Nievola, C. C., Carvalho, C. P., Carvalho, V., Rodrigues, E. (2017). Rapid responses of plants to temperature changes. Temperature, 4(4), 371-405. http://doi.org/10.1080/23328940.2017.1377812 DOI: https://doi.org/10.1080/23328940.2017.1377812

Padua, R. R., Alvarenga, D. O., Queiroz, P. R., Mello, S. C. M. (2007). Avaliação e caracterização de potenciais antagonistas de Sclerotium rolfsii pertencentes ao gênero Trichoderma. Boletim de pesquisas e desenvolvimento, Brasília, Embrapa Recursos Genéticos e Biotecnologia, n. 165. 23.

Sahana, B., Manjunatha Reddy, T. B., Anjaneya Reddy, B., Mushrif, S. K., Doddabasappa, B., Amarananjundeswara, H. (2020). Screening of Capsicum varieties/hybrids against stem rot (Sclerotium rolfsii Sacc.) under poly house condition. Journal of Pharmacognosy and Phytochemistry, 9(4), 1501-1504. DOI: https://doi.org/10.20546/ijcmas.2020.909.112

Samuels, A. L., Glass, A. D. M., Ehret, D. L., Menzies, J. G. (1991). Distribution of silicon in cucumber leaves during infection by powdery mildew fungus (Sphaerotheca fuliginea). Canadian Journal of Botany, 69(1), 140-146. https://doi.org/10.1139/b91-020 DOI: https://doi.org/10.1139/b91-020

Schoonhoven, A. van., Pastor-Corrales, M. A. (1987). Standard system for the evaluation of bean germplasm. Colômbia, CIAT.

Severo, R., Shibutani, L. J. S., Sousa, E. S., Matos, K. S., Beserra Jr, J. E. A., Melo, M. P. (2021). Sclerotium delphinii causing concentric leaf spots in Piper nigrum in Brazil. Australasian Plant Pathology, 50, 661-670. https://doi.org/10.1007/s13313-021-00815-y DOI: https://doi.org/10.1007/s13313-021-00815-y

Soares, J. V. C., Bentes, J. L. S., Gasparotto, L. (2017). Reação de genótipos de Capsicum spp. à podridão do colo (Sclerotium rolfsii). Summa Phytopathologica, 43(1), 58-59. https://doi.org/10.1590/0100-5405/2182 DOI: https://doi.org/10.1590/0100-5405/2182

Stevens, F. L. (1931). A comparative study of Sclerotium rolfsii and Sclerotium delphinii. Mycologia, 23(3), 204-222. DOI: https://doi.org/10.1080/00275514.1931.12017038

Tremacoldi, C. R. (2010). Principais doenças fúngicas da pimenteira-do-reino no Estado do Pará e recomendações de controle. Belém. Embrapa Amazônia Oriental. 23p. (Documentos, 367).

Wang, J., Zhao, B., Liu, C., Liu, H., Liu, A. (2017). First report of Sclerotium delphinii on Cynanchum paniculatum. Australasian Plant Disease Notes, 12(21). https://doi.org/10.1007/s13314-017-0240-y DOI: https://doi.org/10.1007/s13314-017-0240-y

Wordell Filho, J. A., Duarte, H. S. S., Rodrigues, F. A. (2013). Efeito da aplicação foliar de silicato de potássio e de fungicida na severidade da ferrugem da folha e da mancha amarela do trigo. Revista Ceres, 60, 726-730. https://doi.org/10.1590/S0034-737X2013000500018 DOI: https://doi.org/10.1590/S0034-737X2013000500018

Xu, Z., Harrington, T. C., Gleason, M. L., Batzer, J. C. (2010). Phylogenetic placement of plant pathogenic Sclerotium species among teleomorph genera. Mycologia, 102(2), 337-346. https://doi.org/10.3852/08-189 DOI: https://doi.org/10.3852/08-189

Yanar, Y., Miller, S. A. (2003). Resistance of pepper cultivars and accessions of Capsicum spp. to Sclerotinia sclerotiorum. Plant Disease, 87, 303-307. https://doi.org/10.1094/PDIS.2003.87.3.303 DOI: https://doi.org/10.1094/PDIS.2003.87.3.303

Yu, Y., Schjoerring, J. K., Du, X. (2010). Effects of silicon on the activities of defense-related enzymes in cucumber inoculated with Pseudoperonospora cubensis. Journal of Plant Nutrition, 34, 243-257. https://doi.org/10.1080/01904167.2011.533325 DOI: https://doi.org/10.1080/01904167.2011.533325

Zhou, X., Shen, Y., Fu, X., Wu, F. (2018). Application of sodium silicate enhances cucumber resistance to fusarium wilt and alters soil microbial communities. Frontiers in Plant Science, 9, 624. https://doi.org/10 DOI: https://doi.org/10.3389/fpls.2018.00624

Downloads

Published

2024-06-05

How to Cite

Arcanjo Silva, B., Leal Pires, L., & Beserra Jr, J. E. A. (2024). Genetic resistance and silicon in the control of stem rot in Capsicum spp. Revista Brasileira De Engenharia De Biossistemas, 18. https://doi.org/10.18011/bioeng.2024.v18.1115

Issue

Section

Regular Section