Artificial intelligence applied to estimate soybean yield
DOI:
https://doi.org/10.18011/bioeng.2024.v18.1211Keywords:
Artificial Neural Network, Forecast, Intelligent systems, Soy, Mathematical modellingAbstract
The application of mathematical models using biotic and abiotic factors for the efficient use of fertilizers to obtain maximum economic productivity can be an important tool to minimize the cost of soybean (Glycine max (L.) Merr.) grain yield. In this sense, using Artificial Neural Networks (ANN) is an important tool in studies involving optimization. This study aimed to estimate soybean yield in Luiziana, Paraná state, Brazil, by considering two growing seasons and an Artificial Neural Network (ANN) as a function of the morphological and nutritional parameters of the plants. Results reveal a well-trained network, with a margin of error of approximately 10-5, thus acting as a tool to estimate soybean data. For the phases, model validation and network test, i.e., data that were not part of the training (validation), the errors averaged 10-3. These results indicate that our approach is adequate for optimizing soybean yield estimates in the area studied.
Downloads
References
Alcarde, A. C.; Stape, J. L.; Sentelhas, P. C.; Gonçalves, J. L. M.; Sparovek, G. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift. v. 22, n. 6, p. 711 - 728. 2013. 10.1127/0941-2948/2013/0507. DOI: https://doi.org/10.1127/0941-2948/2013/0507
Anagu, I.; Ingwersen, J.; Utermann, J.; Streck, T. Estimation of heavy metal sorption in German soils using artificial neural networks. Geoderma, v. 152, Issues 1–2,15, p. 104-112. 2009. 10.1016/j.geoderma.2009.06.004. DOI: https://doi.org/10.1016/j.geoderma.2009.06.004
Beuchera, A.; Siemssen, R.; Fröjdö, S.; Österholm, P.; Martinkauppi, A.; Edén, P. Artificial neural network for mapping and characterization of acid sulfate soils: Application to Sirppujoki River catchment, southwestern Finland. Geoderma. v. 247–248, p. 38–50. 2015. 10.1016/j.geoderma.2014.11.031. DOI: https://doi.org/10.1016/j.geoderma.2014.11.031
Bonini Neto, A.; Fávaro, V. F. S.; Santos, W. P. L.; Mello, J. M.; Angela, A. V. Radial base neural network for the detection of banana maturation stages: perceptron multilayer network comparison. Brazilian Journal of Biosystems Engineering (UNESP), v. 16, p. 1-7, 2022. 10.18011/bioeng.2022.v16.1175. DOI: https://doi.org/10.18011/bioeng.2022.v16.1175
Bonini Neto, A.; Moreira, A.; Bonini, C. S. B.; Campos, M.; Andrighetto, C. Fuzzy Logic and Artificial Neural Network Perceptron Multi-Layer and Radial Basis in Estimating Marandu Grass Yield in Integrated Systems. Communications in Soil Science and Plant Analysis, v. -, p. 1-12, 2023. 10.1080/00103624.2023.2252839. DOI: https://doi.org/10.1080/00103624.2023.2252839
Bonini Neto, A.; Criscimani, A. L.; Bonini, C. S. B.; Souza, J. F. D.; Oliverio, G. L.; Baretto, V. C. M.; Andrighetto, C. Artificial neural networks applied to the marandu grass production estimate in integrated systems. Brazilian Journal of Biosystems Engineering (UNESP), v. 15, p. 318-341, 2021. 10.18011/bioeng2021v15n2p318-341. DOI: https://doi.org/10.18011/bioeng2021v15n2p318-341
Boote, Kenneth J.; Jones, James W.; Pickering, Nigel B. Potential uses and limitations of crop models. Agronomy jornal. v. 88, n. 5, p. 704-716, 1996. 10.2134/agronj1996.00021962008800050005x. DOI: https://doi.org/10.2134/agronj1996.00021962008800050005x
Braga, A. P.; Carvalho, A. P. L. F.; Ludermir, T. B. Redes neurais artificiais: teoria e aplicações. 2. ed. Rio de Janeiro: LTC Editora, 2007. ISBN 8521615647
Eliasmith, C.; Anderson, C. H. Neural engineering: Computation, representation, and dynamics in neurobiological systems. MIT Press, Cambridge, MA, 2003. ISBN 9780262550604.
Embrapa - Cultivares de soja da Embrapa. Available at https://www.embrapa.br/cultivar/soja. Access: October 2023.
Haykin, S. Neural networks: a comprehensive foundation. 2. ed. Tsinghua University Press. 2001. ISBN 0132733501.
Hoeft, R.G. Desafios para a obtenção de altas produtividades de milho e de soja nos EUA. Piracicaba: Potafos, 2003. p.1-4. (Informações Agronômicas, 104).
IBGE - Instituto Brasileiro de Geografia e Estatística. Available at https://www.ibge.gov.br/. Access: October 2023.
Kamali, M, Hewage, K. Development of performance criteria for sustainability evaluation of modular versus conventional construction methods. J Clean Prod, v. 142, p. 3592-360620 2017. 10.1016/j.jclepro.2016.10.108. DOI: https://doi.org/10.1016/j.jclepro.2016.10.108
Kovacs, Z. L. Redes Neurais Artificiais: Fundamentos e Aplicações: Um texto básico. 4ª ed. Editora Livraria da Física. 177 p., 2006. ISBN 8588325144.
Mathworks. Available at https://www.mathworks.com. Access: March 2022.
Moreira, A., Bonini Neto, A., Bonini, C. S. B., Moraes, L. A. C., Heinrichs, R. Prediction of soybean yield cultivated under subtropical conditions using artificial neural networks. Agronomy Journal, v. 115, p. 1981-1991. 2023. 10.1002/agj2.21360 DOI: https://doi.org/10.1002/agj2.21360
Mouazen, A. M.; Kuang, B.; De Baerdemaeker, J. And Ramon, H. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma, v. 158, p. 23-31, 2010. 10.1016/j.geoderma.2010.03.001. DOI: https://doi.org/10.1016/j.geoderma.2010.03.001
Putti, F. F.; Gabriel Filho, L. R. A.; Gabriel, C. P. C.; Bonini Neto, A.; Bonini, C. S. B.; Reis, A. R. A Fuzzy mathematical model to estimate the effects of global warming on the vitality of Laelia purpurata orchids. Mathematical Biosciences, v. 288, p. 124-129, 2017. 10.1016/j.mbs.2017.03.005. DOI: https://doi.org/10.1016/j.mbs.2017.03.005
Rummelhart, D. E.; Mcclelland, J. L. PDP Research Group. Parallel Distributed Processing - Explorations in the Microstructure of Cognition. v. 1: Foundations. A Bradford Book - The MIT Press. 1986. 10.7551/mitpress/5236.001.0001.
Silveira, C. T.; Oka-Fiori, C.; Santos, L. J. C.; Sirtoli, A. E.; Silva, C. R.; Botelho, M. F. Soil prediction using artificial neural networks and topographic attributes. Geoderma, v. 195–196, p. 165-172. 2013. 10.1016/j.geoderma.2012.11.016. DOI: https://doi.org/10.1016/j.geoderma.2012.11.016
Souza, A. V.; Bonini Neto, A.; Piazentin, J. C.; Dainese Junior, B. J.; Gomes, E. P.; Bonini, C. S. B.; Putti, F. F. Artificial neural network modelling in the prediction of banana's harvest. Scientia Horticulturae, v. 257, p. 108724, 2019. 10.1016/j.scienta.2019.108724. DOI: https://doi.org/10.1016/j.scienta.2019.108724
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Brasileira de Engenharia de Biossistemas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms:
a) Authors retain the copyright and grant the journal the right of first publication, with the work simultaneously licensed under the Creative Commons Attribution License that allows the sharing of the work with recognition of authorship and initial publication in this journal.
b) Authors are authorized to assume additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (eg, publish in an institutional repository or as a book chapter), with recognition of authorship and initial publication in this journal.