Artificial intelligence applied to estimate soybean yield

Authors

  • Wesley Prado Leão dos Santos São Paulo State University (UNESP), School of Sciences and Engineering, Tupã, São Paulo State, Brazil
  • Mariana Bonini Silva São Paulo State University (UNESP), College of Agricultural and Technological Sciences, Dracena, São Paulo State, Brazil
  • Alfredo Bonini Neto São Paulo State University (UNESP), School of Sciences and Engineering, Tupã, São Paulo State, Brazil https://orcid.org/0000-0002-0250-489X
  • Carolina dos Santos Batista Bonini São Paulo State University (UNESP), College of Agricultural and Technological Sciences, Dracena, São Paulo State, Brazil
  • Adônis Moreira Department of Soil Science, Embrapa Soja, Londrina, Paraná State, Brazil https://orcid.org/0000-0003-4023-5990

DOI:

https://doi.org/10.18011/bioeng.2024.v18.1211

Keywords:

Artificial Neural Network, Forecast, Intelligent systems, Soy, Mathematical modelling

Abstract

The application of mathematical models using biotic and abiotic factors for the efficient use of fertilizers to obtain maximum economic productivity can be an important tool to minimize the cost of soybean (Glycine max (L.) Merr.) grain yield. In this sense, using Artificial Neural Networks (ANN) is an important tool in studies involving optimization. This study aimed to estimate soybean yield in Luiziana, Paraná state, Brazil, by considering two growing seasons and an Artificial Neural Network (ANN) as a function of the morphological and nutritional parameters of the plants. Results reveal a well-trained network, with a margin of error of approximately 10-5, thus acting as a tool to estimate soybean data. For the phases, model validation and network test, i.e., data that were not part of the training (validation), the errors averaged 10-3. These results indicate that our approach is adequate for optimizing soybean yield estimates in the area studied.

Downloads

Download data is not yet available.

References

Alcarde, A. C.; Stape, J. L.; Sentelhas, P. C.; Gonçalves, J. L. M.; Sparovek, G. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift. v. 22, n. 6, p. 711 - 728. 2013. 10.1127/0941-2948/2013/0507. DOI: https://doi.org/10.1127/0941-2948/2013/0507

Anagu, I.; Ingwersen, J.; Utermann, J.; Streck, T. Estimation of heavy metal sorption in German soils using artificial neural networks. Geoderma, v. 152, Issues 1–2,15, p. 104-112. 2009. 10.1016/j.geoderma.2009.06.004. DOI: https://doi.org/10.1016/j.geoderma.2009.06.004

Beuchera, A.; Siemssen, R.; Fröjdö, S.; Österholm, P.; Martinkauppi, A.; Edén, P. Artificial neural network for mapping and characterization of acid sulfate soils: Application to Sirppujoki River catchment, southwestern Finland. Geoderma. v. 247–248, p. 38–50. 2015. 10.1016/j.geoderma.2014.11.031. DOI: https://doi.org/10.1016/j.geoderma.2014.11.031

Bonini Neto, A.; Fávaro, V. F. S.; Santos, W. P. L.; Mello, J. M.; Angela, A. V. Radial base neural network for the detection of banana maturation stages: perceptron multilayer network comparison. Brazilian Journal of Biosystems Engineering (UNESP), v. 16, p. 1-7, 2022. 10.18011/bioeng.2022.v16.1175. DOI: https://doi.org/10.18011/bioeng.2022.v16.1175

Bonini Neto, A.; Moreira, A.; Bonini, C. S. B.; Campos, M.; Andrighetto, C. Fuzzy Logic and Artificial Neural Network Perceptron Multi-Layer and Radial Basis in Estimating Marandu Grass Yield in Integrated Systems. Communications in Soil Science and Plant Analysis, v. -, p. 1-12, 2023. 10.1080/00103624.2023.2252839. DOI: https://doi.org/10.1080/00103624.2023.2252839

Bonini Neto, A.; Criscimani, A. L.; Bonini, C. S. B.; Souza, J. F. D.; Oliverio, G. L.; Baretto, V. C. M.; Andrighetto, C. Artificial neural networks applied to the marandu grass production estimate in integrated systems. Brazilian Journal of Biosystems Engineering (UNESP), v. 15, p. 318-341, 2021. 10.18011/bioeng2021v15n2p318-341. DOI: https://doi.org/10.18011/bioeng2021v15n2p318-341

Boote, Kenneth J.; Jones, James W.; Pickering, Nigel B. Potential uses and limitations of crop models. Agronomy jornal. v. 88, n. 5, p. 704-716, 1996. 10.2134/agronj1996.00021962008800050005x. DOI: https://doi.org/10.2134/agronj1996.00021962008800050005x

Braga, A. P.; Carvalho, A. P. L. F.; Ludermir, T. B. Redes neurais artificiais: teoria e aplicações. 2. ed. Rio de Janeiro: LTC Editora, 2007. ISBN 8521615647

Eliasmith, C.; Anderson, C. H. Neural engineering: Computation, representation, and dynamics in neurobiological systems. MIT Press, Cambridge, MA, 2003. ISBN 9780262550604.

Embrapa - Cultivares de soja da Embrapa. Available at https://www.embrapa.br/cultivar/soja. Access: October 2023.

Haykin, S. Neural networks: a comprehensive foundation. 2. ed. Tsinghua University Press. 2001. ISBN 0132733501.

Hoeft, R.G. Desafios para a obtenção de altas produtividades de milho e de soja nos EUA. Piracicaba: Potafos, 2003. p.1-4. (Informações Agronômicas, 104).

IBGE - Instituto Brasileiro de Geografia e Estatística. Available at https://www.ibge.gov.br/. Access: October 2023.

Kamali, M, Hewage, K. Development of performance criteria for sustainability evaluation of modular versus conventional construction methods. J Clean Prod, v. 142, p. 3592-360620 2017. 10.1016/j.jclepro.2016.10.108. DOI: https://doi.org/10.1016/j.jclepro.2016.10.108

Kovacs, Z. L. Redes Neurais Artificiais: Fundamentos e Aplicações: Um texto básico. 4ª ed. Editora Livraria da Física. 177 p., 2006. ISBN 8588325144.

Mathworks. Available at https://www.mathworks.com. Access: March 2022.

Moreira, A., Bonini Neto, A., Bonini, C. S. B., Moraes, L. A. C., Heinrichs, R. Prediction of soybean yield cultivated under subtropical conditions using artificial neural networks. Agronomy Journal, v. 115, p. 1981-1991. 2023. 10.1002/agj2.21360 DOI: https://doi.org/10.1002/agj2.21360

Mouazen, A. M.; Kuang, B.; De Baerdemaeker, J. And Ramon, H. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma, v. 158, p. 23-31, 2010. 10.1016/j.geoderma.2010.03.001. DOI: https://doi.org/10.1016/j.geoderma.2010.03.001

Putti, F. F.; Gabriel Filho, L. R. A.; Gabriel, C. P. C.; Bonini Neto, A.; Bonini, C. S. B.; Reis, A. R. A Fuzzy mathematical model to estimate the effects of global warming on the vitality of Laelia purpurata orchids. Mathematical Biosciences, v. 288, p. 124-129, 2017. 10.1016/j.mbs.2017.03.005. DOI: https://doi.org/10.1016/j.mbs.2017.03.005

Rummelhart, D. E.; Mcclelland, J. L. PDP Research Group. Parallel Distributed Processing - Explorations in the Microstructure of Cognition. v. 1: Foundations. A Bradford Book - The MIT Press. 1986. 10.7551/mitpress/5236.001.0001.

Silveira, C. T.; Oka-Fiori, C.; Santos, L. J. C.; Sirtoli, A. E.; Silva, C. R.; Botelho, M. F. Soil prediction using artificial neural networks and topographic attributes. Geoderma, v. 195–196, p. 165-172. 2013. 10.1016/j.geoderma.2012.11.016. DOI: https://doi.org/10.1016/j.geoderma.2012.11.016

Souza, A. V.; Bonini Neto, A.; Piazentin, J. C.; Dainese Junior, B. J.; Gomes, E. P.; Bonini, C. S. B.; Putti, F. F. Artificial neural network modelling in the prediction of banana's harvest. Scientia Horticulturae, v. 257, p. 108724, 2019. 10.1016/j.scienta.2019.108724. DOI: https://doi.org/10.1016/j.scienta.2019.108724

Downloads

Published

2024-03-14

How to Cite

dos Santos, W. P. L., Silva, M. B., Bonini Neto, A., Bonini, C. dos S. B., & Moreira, A. (2024). Artificial intelligence applied to estimate soybean yield. Revista Brasileira De Engenharia De Biossistemas, 18. https://doi.org/10.18011/bioeng.2024.v18.1211

Issue

Section

IX Biosystems Engineering Week