MECHANICAL STRENGTH OF FIBER VEGETABLE MERCERIZED OF SUGAR CANE AND BAMBOO

Authors

  • R. Outa
  • F. R. Chavarette
  • M. J. Q. Louzada

DOI:

https://doi.org/10.18011/bioeng2016v10n3p288-304

Keywords:

acoustic, mechanical resistance, vegetable fiber

Abstract

Currently the addition of synthetic and natural fibers has been applied in different areas, and due to environmental issues, some researchers have focused their studies for applications with natural fibers in the textile industry, construction, plastics and even automotive. This interest is further enhanced by reducing costs, hence the consumer selling prices. The motivation of this research is arising from previous studies of this author, whose crushed material from sugarcane bagasse was used to manufacture a composite binder originating from the sub-process of a sugar mill and alcohol. Thus, this research aims to analyze the mechanical strength characteristics of the traction and the elastic modulus of sugar cane and bamboo fibers, which, both transverselycut fibers fibrous line with about 150.0 mm, They were mercerized in a NaOH 10% solution. The final test results of mechanical tests of both fibers, show similar results to high impact materials and high materials and low density, with the proviso that the bamboo fiber has a higher tensile strength that the cane fiber , in which case, this difference is due to the structural feature amount of xylem and even the concentration of lignin in the region.

Downloads

Download data is not yet available.

References

ALBINANTE, S.R. et al, Revisão dos tratamentos químicos da fibra natural para mistura com poliolefinas. Química Nova, Vol. 36, No. 1, 114-122, 2013.

BAKKER, H., Sugar cane cultivation and management, Springer Science+Business Media, New York. 1999. 691 p.

BENINI, K. C. C. C., Desenvolvimento e caracterização de compósitos poliméricos reforçados com fibras lignocelulósicas: hips/fibra da casca de côco verde e bagaço de cana de açúcar, Guaratinguetá, 2011, 125 p. Dissertação (Dissertação em Engenharia Mecânica) -Universidade Estadual Paulista, UNESP, São Paulo, 2011.

CAMPOS, A. et al, Efeito do tratamento das fibras nas propriedades do biocompósito de amido termoplástico, policaprolactona, sisal. Polímeros, v. 21, n.3, São Carlos, 2011.

CHUNG, D.D.L., Composite Materials: Science and Applications, 2nd Edition, Springer-Verlag, London, 2010. 358 p.EBNESAJJAD, S., Surface Treatment of Materials for Adhesive Bonding, Elsevier, Waltham, USA, 2014. 337 p.

HODZIC, A., SHANKS, R, Natural Fibers Composites Materials, processes and properties, Woodhead Publishing, Philadelphia, USA, 2014. 401 p.

ISAACA, A., SKETC,F., DRIEMEIERB, C., ROCHAB, G.J.M., 3D imaging of sugarcane bagasse using X-ray microtomography, Industrial Crops and Products -Elsevier, v. 49, n.1, p. 790-793, 2013.

ITO, R., MIYAFUJI, H., KASUYA, N., Rhizome and root anatomy of moso bamboo (Phyllostachys pubescens) observed with scanning electron microscopy, Journal of Wood Science, v.61, r.4, p. 431-437, 2015.

JWEEG, M.J. et al, Experimental and Theoretical Studies of Mechanical Properties for Reinforcement Fiber Types of Composite Materials. International Journal of Mechanical & Mechatronics Engineering, IJMME-IJENS v.12 n.04, Aug 2012.

KALIA, S., et al, Cellulose Fibers: Bio-and Nano-Polymer Composites Green Chemistry and Technology, Springer-Verlag, Berlin Heidelberg, 2011. 758 p.

KOIZUMI, T. et al, A. The development of sound absorbing materials using atural bamboo fibers. In: BREBBIA, C. A.; WILDE, W. P. de. (Eds.). High performance structures and composities. Southampton: WIT Press, 2002. 10 p.

LIESE, W., MICHAEL KOHL, M., Bamboo -The Plant and its Uses, Springer International, Switzerland, 2015. 362 p.MARINHO, N.P., et al, ANÁLISE QUÍMICA DO BAMBU-GIGANTE, Ciência Florestal, Santa Maria, v. 22, n. 2, p. 413-418, abr. 2012.

MULINARI, D.R., Comportamento térmico, mecânico e morfológico dos compósitos de polietileno de alta densidade reforçados com fibras de celulose do bagaço de cana de açúcar, Guaratinguetá, 2009, 112 p. Tese (Doutorado em Engenharia Mecânica) –Universidade Estadual Paulista, UNESP, São Paulo, 2009.

OUTA, R., Estudo e Análise do Coeficiente de Absorção Acústico do Compósito da Fibra da Cana, Ilha Solteira, 2014, 72 p. Dissertação (Mestrado em Engenharia Mecânica) –Universidade Estadual Paulista, UNESP, São Paulo, 2014.

PASQUINI, D., et al, Surface esterification of cellulose fibres: Processing and characterisation of low-density polyethylene/cellulose fibres composites. Composites Science and Technology, Composites Science and Technology 68 193–201, Feb 2007.

PATEL, H., VASHI, R.T., Characterization And Treatment Of Textile Wastewater, Butterworth Heinemann is an imprint of Elsevier, Waltham, USA, 2015. 174 p.

PEREIRA, P.H.F., etal, Sugarcane bagasse pulping and bleaching: thermal and chemical characterization, BioResources, v. 6, n. 3, p. 2471-2482. 2011.

PIRES, A.J.V. et al, Bagaço de cana-de-açúcar tratado com hidróxido de sódio, Revista Brasileira Zootecnia, v.35, n.3, p.953-957, 2006.

POCIUS, A.V., Adhesion and Adhesives Technology An Introduction, Hanser Publications, Ohio, USA, 2012. 388 p.

ROMEL, D.V. et al. Cinza do bagaço da cana de açúcar como agregado em concretos e argamassas. Revista Eletrônica em Engenharia Civil,Goiânia, v. 8, n. 1, 2014.

RUDALL, P.J., Anatomy of Flowering Plants, Cambridge University Press, New York, 2007. 159 p.

STOKKE, D.D.,WU, Q.,HAN, G.,Introduction to Wood and Natural Fiber Composites, John Wiley & Sons, 1aEdition, United Kingdom. 2014. 315 p.

SOUZA, S.A., Ensaios Mecânicos de Materiais Metálicos, 11ª. Edição, Edgar Blucher, São Paulo, Brasil, 2012. 286 p

Published

2016-09-29

How to Cite

Outa, R., Chavarette, F. R., & Louzada, M. J. Q. (2016). MECHANICAL STRENGTH OF FIBER VEGETABLE MERCERIZED OF SUGAR CANE AND BAMBOO. Revista Brasileira De Engenharia De Biossistemas, 10(3), 288–304. https://doi.org/10.18011/bioeng2016v10n3p288-304

Issue

Section

Regular Section