Shaping agricultural future: a comprehensive review on crispr technology applications in agriculture

Autores

  • Karen Vitoria Alvares Department of animal and plant production, Faculty of Agrarian and Technological Sciences (FCAT), Dracena-SP, Brazil https://orcid.org/0009-0009-3179-7757
  • Juliana Françoso Da Silva Department of animal and plant production, Faculty of Agrarian and Technological Sciences (FCAT), Dracena-SP, Brazil
  • Clayton Luís Baravelli De Oliveira Federal Institute of Education, Science and Technology of São Paulo - IFSP - São Roque-SP, Brazil https://orcid.org/0000-0001-7623-5197

DOI:

https://doi.org/10.18011/bioeng.2024.v18.1227

Palavras-chave:

Cas9, Cleavage, Genome, Genetic Improvement

Resumo

With the increasing global demand for food, new pathways have emerged to drive the development and manipulation of crops with desired traits to ensure food security. CRISPR technology has enabled genome editing, allowing the addition or destruction of specific DNA sequences to modify a function, technology stands out as an exceptionally versatile tool. The components of the CRISPR system include the Cas9 enzyme, responsible for double-strand DNA cuts, and the guide RNA (gRNA), forming part of the spacer RNA. Through a systematic review, we searched, identifying 30 articles related to the CRISPR technique and its application in agriculture. The CRISPR-Cas9 system has been widely employed to understand transcriptional regulation, make epigenetic modifications, and microscopically visualize specific genome loci. The results support the specificity of genome editing with the CRISPR/Cas9 system, demonstrating efficiency in enhancing crop performance, enabling the generation of plants free of foreign DNA, and avoiding off-target mutations. Overall, the technique has increased productivity, water stress resistance, and weed control in various crops evaluated. It plays a pivotal role in boosting agricultural productivity, enabling the creation of crops adapted to adverse environments, and significantly enhancing food security. CRISPR/Cas9 thus represents a fundamental tool in genetic engineering, propelling significant innovations to address global agricultural challenges.

Downloads

Não há dados estatísticos.

Referências

Abe, K., Araki, E., Suzuki, Y., Toki, S., & Saika, H. (2018). Production of high oleic/low linoleic rice by genome editing. Plant Physiology and Biochemistry, 131, 58–62. https://doi.org/10.1016/j.plaphy.2018.04.033 DOI: https://doi.org/10.1016/j.plaphy.2018.04.033

Achary, V. M. M., & Reddy, M. K. (2021). CRISPR-Cas9 mediated mutation in GRAIN WIDTH and WEIGHT2 (GW2) locus improves aleurone layer and grain nutritional quality in rice. Scientific Reports, 11(1), 21941. https://doi.org/10.1038/s41598-021-00828-z DOI: https://doi.org/10.1038/s41598-021-00828-z

Andersson, M., Turesson, H., Olsson, N., Fält, A. S., Ohlsson, P., Gonzalez, M. N., Samuelsson, M., & Hofvander, P. (2018). Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiologia Plantarum, 164(4), 378–384. https://doi.org/10.1111/ppl.12731 DOI: https://doi.org/10.1111/ppl.12731

Angon, P. B., & Habiba, U. (2023). Application of the CRISPR/Cas9 gene-editing system and its participation in plant and medical science. Current Applied Science and Technology. https://doi.org/10.55003/cast.2022.03.23.003 DOI: https://doi.org/10.55003/cast.2022.03.23.003

Anzalone, A. V., Koblan, L. W., & Liu, D. R. (2020). Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nature Biotechnology, 38(7), 824–844. https://doi.org/10.1038/s41587-020-0561-9 DOI: https://doi.org/10.1038/s41587-020-0561-9

Bansal, R. (2022). CRISPR-Cas9 in gene editing (Part 4). Biotechnology by TSB. Retrieved from https://medium.com/biotechnology-by-tsb/crispr-cas9-in-gene-editing-part-4-3183066f072b

Caddell, D., Langenfeld, N. J., Eckels, M. J. H., Zhen, S., Klaras, R., Mishra, L., Bugbee, B., & Coleman-Derr, D. (2023). Photosynthesis in rice is increased by CRISPR/Cas9-mediated transformation of two truncated light-harvesting antenna. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1050483 DOI: https://doi.org/10.3389/fpls.2023.1050483

Caetano, G. C., Santos, H. D. O., Ramos, C., Vindilino, R., Antunes, S., & Sales, I. (2018). Técnica CRISPR-Cas9 e sua utilização na área laboratorial.

Chen, J., Li, Q., Zhang, P., Lu, H., Bian, Y., Jian, Y., Wang, Y., Ding, X., & Xiao, J. (2021). Cloning and functional characterization of two GsSnRK1 gene promoters from wild soybean. Plant Biotechnology Reports, 15(5), 627–639. https://doi.org/10.1007/s11816-021-00700-6 DOI: https://doi.org/10.1007/s11816-021-00700-6

Cheng, A. W., Wang, H., Yang, H., Shi, L., Katz, Y., Theunissen, T. W., Rangarajan, S., et al. (2013). Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Research, 23(10), 1163–1171. https://doi.org/10.1038/cr.2013.122 DOI: https://doi.org/10.1038/cr.2013.122

DuanMu, H., Wang, Y., Bai, X., Cheng, S., Deyholos, M. K., Wong, G. K.-S., Li, D., et al. (2015). Wild soybean roots depend on specific transcription factors and oxidation-reduction related genes in response to alkaline stress. Functional & Integrative Genomics, 15(6), 651–660. https://doi.org/10.1007/s10142-015-0439-y DOI: https://doi.org/10.1007/s10142-015-0439-y

El-Mounadi, K., Morales-Floriano, M. L., & Garcia-Ruiz, H. (2020). Principles, applications, and biosafety of plant genome editing using CRISPR-Cas9. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00056 DOI: https://doi.org/10.3389/fpls.2020.00056

Gupta, D., Bhattacharjee, O., Mandal, D., Sen, M. K., Dey, D., Dasgupta, A., Kazi, T. A., et al. (2019). CRISPR-Cas9 system: A new-fangled dawn in gene editing. Life Sciences, 232, 116636. https://doi.org/10.1016/j.lfs.2019.116636 DOI: https://doi.org/10.1016/j.lfs.2019.116636

Hu, J., Lei, Y., Wong, W.-K., Liu, S., Lee, K.-C., He, X., You, W., et al. (2014). Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Research, 42(7), 4375–4390. https://doi.org/10.1093/nar/gku109 DOI: https://doi.org/10.1093/nar/gku109

Ikram, M., Rauf, A., Rao, M. J., Maqsood, M. F. K., Bakhsh, M. Z. M., Ullah, M., Batool, M., Mehran, M., & Tahira, M. (2024). CRISPR-Cas9 based molecular breeding in crop plants: A review. Molecular Biology Reports, 51(1), 227. https://doi.org/10.1007/s11033-023-09086-w DOI: https://doi.org/10.1007/s11033-023-09086-w

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821. https://doi.org/10.1126/science.1225829 DOI: https://doi.org/10.1126/science.1225829

Kalamakis, G., & Platt, R. J. (2023). CRISPR for neuroscientists. Neuron, 111(15), 2282–2311. https://doi.org/10.1016/j.neuron.2023.04.021 DOI: https://doi.org/10.1016/j.neuron.2023.04.021

Kim, D., Alptekin, B., & Budak, H. (2018). CRISPR/Cas9 genome editing in wheat. Functional and Integrative Genomics, 18(1), 31–41. https://doi.org/10.1007/s10142-017-0572-x DOI: https://doi.org/10.1007/s10142-017-0572-x

Koltun, A., Volpi e Silva, N., Angelotti-Mendonça, J., Marin, S. R. R., Gonçalves, L. S. A., Nepomuceno, A. L., & Mertz-Henning, L. M. (2023). CRISPR-transient expression in soybean for simplified gRNA screening in planta. Pesquisa Agropecuária Brasileira, 58, e03000. https://doi.org/10.1590/S1678-3921.pab2023.v58.03000 DOI: https://doi.org/10.1590/s1678-3921.pab2023.v58.03000

Koonin, E. V., Makarova, K. S., & Zhang, F. (2017). Diversity, classification, and evolution of CRISPR-Cas systems. Current Opinion in Microbiology, 37, 67–78. https://doi.org/10.1016/j.mib.2017.05.008 DOI: https://doi.org/10.1016/j.mib.2017.05.008

Li, R., Zhang, L., Wang, L., Chen, L., Zhao, R., Sheng, J., & Shen, L. (2018). Reduction of tomato-plant chilling tolerance by CRISPR–Cas9-mediated SlCBF1 mutagenesis. Journal of Agricultural and Food Chemistry, 66(34), 9042–9051. https://doi.org/10.1021/acs.jafc.8b02177 DOI: https://doi.org/10.1021/acs.jafc.8b02177

Liang, Z., Chen, K., Li, T., Zhang, Y., Wang, Y., Zhao, Q., Liu, J., et al. (2017). Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications, 8(1), 14261. https://doi.org/10.1038/ncomms14261 DOI: https://doi.org/10.1038/ncomms14261

Lin, D., Najam, S. S., Liu, Y., Murgia, N., & Vinnikov, I. A. (2024). Noodles, the all-in-one system for on-target efficiency analysis of CRISPR guide RNAs. MethodsX, 12, 102481. https://doi.org/10.1016/j.mex.2023.102481 DOI: https://doi.org/10.1016/j.mex.2023.102481

Lin, Z., Xu, S., Que, Y., Wang, J., Comstock, J. C., Wei, J., McCord, P. H., et al. (2014). Species-specific detection and identification of Fusarium species complex, the causal agent of sugarcane pokkah boeng in China. PLoS ONE, 9(8), e104195. https://doi.org/10.1371/journal.pone.0104195 DOI: https://doi.org/10.1371/journal.pone.0104195

Liu, Y., Cao, L., Wu, X., Wang, S., Zhang, P., Li, M., Jiang, J., Ding, X., & Cao, X. (2023). Functional characterization of wild soybean (Glycine soja) GsSnRK1.1 protein kinase in plant resistance to abiotic stresses. Journal of Plant Physiology, 280, 153881. https://doi.org/10.1016/j.jplph.2022.153881 DOI: https://doi.org/10.1016/j.jplph.2022.153881

Lu, P., Dai, S. Y., Yong, L. T., Zhou, B. H., Wang, N., Dong, Y. Y., Liu, W. C., et al. (2023). A soybean sucrose non-fermenting protein kinase 1 gene, GmSNF1, positively regulates plant response to salt and salt-alkali stress in transgenic plants. International Journal of Molecular Sciences, 24(15), 12482. https://doi.org/10.3390/ijms241512482 DOI: https://doi.org/10.3390/ijms241512482

Lucioli, A., Tavazza, R., Baima, S., Fatyol, K., Burgyan, J., & Tavazza, M. (2022). CRISPR-Cas9 targeting of the eIF4E1 gene extends the potato virus Y resistance spectrum of the Solanum tuberosum L. cv. Desirée. Frontiers in Microbiology, 13, 873930. https://doi.org/10.3389/fmicb.2022.873930 DOI: https://doi.org/10.3389/fmicb.2022.873930

Makarova, K. S., Wolf, Y. I., Alkhnbashi, O. S., Costa, F., Shah, S. A., Saunders, S. J., Barrangou, R., et al. (2015). An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology, 13(11), 722–736. https://doi.org/10.1038/nrmicro3569 DOI: https://doi.org/10.1038/nrmicro3569

Minkenberg, B., Wheatley, M., & Yang, Y. (2017). CRISPR/Cas9-enabled multiplex genome editing and its application. In D. P. Weeks & B. Yang (Eds.), Progress in Molecular Biology and Translational Science: Gene editing in plants (pp. 111–132). Academic Press. https://doi.org/10.1016/bs.pmbts.2017.05.003 DOI: https://doi.org/10.1016/bs.pmbts.2017.05.003

Mohanty, J. K., Jha, U. C., Dixit, G. P., Bharadwaj, C., & Parida, S. K. (2023). eQTL-Seq: A rapid genome-wide integrative genetical genomics strategy to dissect complex regulatory architecture of gene expression underlying quantitative trait variation in crop plants. Plant Molecular Biology Reporter. https://doi.org/10.1007/s11105-023-01411-8 DOI: https://doi.org/10.1007/s11105-023-01411-8

Moreno-Mateos, M. A., Vejnar, C. E., Beaudoin, J. D., Fernandez, J. P., Mis, E. K., Khokha, M. K., & Giraldez, A. J. (2015). CRISPRscan: Designing highly efficient sgRNAs for CRISPR/Cas9 targeting in vivo. Nature Methods, 12(10), 982–988. https://doi.org/10.1038/nmeth.3543 DOI: https://doi.org/10.1038/nmeth.3543

Mukami, A., Juma, B. S., Mweu, C., Oduor, R., & Mbinda, W. (2024). CRISPR-Cas9-induced targeted mutagenesis of feruloyl CoA 6′-hydroxylase gene reduces postharvest physiological deterioration in cassava roots. Postharvest Biology and Technology, 208, 112649. https://doi.org/10.1016/j.postharvbio.2023.112649 DOI: https://doi.org/10.1016/j.postharvbio.2023.112649

Nussenzweig, P. M., & Marraffini, L. A. (2020). Molecular mechanisms of CRISPR-Cas immunity in bacteria. Annual Review of Genetics, 54(1), 93–120. https://doi.org/10.1146/annurev-genet-022120-112523 DOI: https://doi.org/10.1146/annurev-genet-022120-112523

Oliveira, C. L. B., Cassimiro, J. B., Da Silva, D. S., Belisario, M. P., Heinrichs, R., Cassim, B. A. R., Batista, M. A., & Moro, E. (2024). Potential of enhanced efficiency nitrogen fertilizers in reducing nitrogen and carbon losses in a sandy soil integrated crop-livestock system. Journal of Environmental Management, 371, 122898. https://doi.org/10.1016/j.jenvman.2024.122898 DOI: https://doi.org/10.1016/j.jenvman.2024.122898

Oliveira, C. L. B., Cassimiro, J. B., Lira, M. V. D. S., Boni, A. D. S., Donato, N. L., Reis, R. D. A., & Heinrichs, R. (2022). Sugarcane ratoon yield and soil phosphorus availability in response to enhanced efficiency phosphate fertilizer. Agronomy, 12(11), 2817. https://doi.org/10.3390/agronomy12112817 DOI: https://doi.org/10.3390/agronomy12112817

Ozuna, C. V., Iehisa, J. C. M., Giménez, M. J., Alvarez, J. B., Sousa, C., & Barro, F. (2015). Diversification of the celiac disease α-gliadin complex in wheat: A 33-mer peptide with six overlapping epitopes, evolved following polyploidization. The Plant Journal, 82(5), 794–805. https://doi.org/10.1111/tpj.12851 DOI: https://doi.org/10.1111/tpj.12851

Pallarz, S., Fiedler, S., Wahler, D., Lämke, J., & Grohmann, L. (2023). Reproducibility of next-generation-sequencing-based analysis of a CRISPR/Cas9 genome edited oil seed rape. Food Chemistry: Molecular Sciences, 7, 100182. https://doi.org/10.1016/j.fochms.2023.100182 DOI: https://doi.org/10.1016/j.fochms.2023.100182

Paul, B., & Montoya, G. (2020). CRISPR-Cas12a: Functional overview and applications. Biomedical Journal, 43(1), 8–17. https://doi.org/10.1016/j.bj.2019.10.005 DOI: https://doi.org/10.1016/j.bj.2019.10.005

Rainha, J., Rodrigues, J. L., & Rodrigues, L. R. (2020). CRISPR-Cas9: A powerful tool to efficiently engineer Saccharomyces cerevisiae. Life, 11(1), 13. https://doi.org/10.3390/life11010013 DOI: https://doi.org/10.3390/life11010013

Samai, P., Pyenson, N., Jiang, W., Goldberg, G. W., Hatoum-Aslan, A., & Marraffini, L. A. (2015). Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity. Cell, 161(5), 1164–1174. https://doi.org/10.1016/j.cell.2015.04.027 DOI: https://doi.org/10.1016/j.cell.2015.04.027

Sánchez-León, S., Gil-Humanes, J., Ozuna, C. V., Giménez, M. J., Sousa, C., Voytas, D. F., & Barro, F. (2018). Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal, 16(4), 902–910. https://doi.org/10.1111/pbi.12837 DOI: https://doi.org/10.1111/pbi.12837

Sánchez-Martín, J., Steuernagel, B., Ghosh, S., Herren, G., Hurni, S., Adamski, N., Vrána, J., et al. (2016). Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biology, 17(1). https://doi.org/10.1186/s13059-016-1082-1 DOI: https://doi.org/10.1186/s13059-016-1082-1

Santos, E. A., Andrade Júnior, V. C., Sousa Júnior, A. S., Okumura, F., Simeone, M. L. F., Santos, J. B., & Azevedo, A. M. (2018). Selectivity of pre-emergent herbicides in sweet potato genotypes. Revista Brasileira de Ciências Agrárias - Brazilian Journal of Agricultural Sciences, 13(1), 1–8. https://doi.org/10.5039/agraria.v13i1a5511 DOI: https://doi.org/10.5039/agraria.v13i1a5511

Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C., & Doudna, J. A. (2014). DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Biophysical Journal, 106(2), 695a. https://doi.org/10.1016/j.bpj.2013.11.3848 DOI: https://doi.org/10.1016/j.bpj.2013.11.3848

Svitashev, S., Schwartz, C., Lenderts, B., Young, J. K., & Mark Cigan, A. (2016). Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nature Communications, 7(1), 1-7. https://doi.org/10.1038/ncomms13274 DOI: https://doi.org/10.1038/ncomms13274

Veillet, F., Perrot, L., Chauvin, L., Kermarrec, M. P., Guyon-Debast, A., Chauvin, J. E., Nogué, F., & Mazier, M. (2019). Transgene-free genome editing in tomato and potato plants using Agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor. International Journal of Molecular Sciences, 20(2), 402. https://doi.org/10.3390/ijms20020402 DOI: https://doi.org/10.3390/ijms20020402

Wang, L., Chen, L., Li, R., Zhao, R., Yang, M., Sheng, J., & Shen, L. (2017). Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. Journal of Agricultural and Food Chemistry, 65(39), 8674–8682. https://doi.org/10.1021/acs.jafc.7b02745 DOI: https://doi.org/10.1021/acs.jafc.7b02745

Ye, M., Yao, M., Li, C., & Gong, M. (2023). Salt and osmotic stress can improve the editing efficiency of CRISPR/Cas9-mediated genome editing system in potato. PeerJ, 11, e15771. https://doi.org/10.7717/peerj.15771 DOI: https://doi.org/10.7717/peerj.15771

Yin, H., Xue, W., Chen, S., Bogorad, R. L., Benedetti, E., Grompe, M., Koteliansky, V., et al. (2014). Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nature Biotechnology, 32(6), 551–553. https://doi.org/10.1038/nbt.2884 DOI: https://doi.org/10.1038/nbt.2884

Yu, X., Huo, G., Yu, J., Li, H., & Li, J. (2023). Prime editing: Its systematic optimization and current applications in disease treatment and agricultural breeding. International Journal of Biological Macromolecules, 253, 127025. https://doi.org/10.1016/j.ijbiomac.2023.127025 DOI: https://doi.org/10.1016/j.ijbiomac.2023.127025

Zeng, J., Wang, C., Ding, Z., Wang, B., Liu, Y., Guo, J., Chen, J., et al. (2020). Identification and functional prediction of lncRNAs during cassava post-harvest physiological deterioration. Agronomy Journal, 112(6), 4914–4925. https://doi.org/10.1002/agj2.20343 DOI: https://doi.org/10.1002/agj2.20343

Zeng, Y., Wen, J., Zhao, W., Wang, Q., & Huang, W. (2020). Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB30 with the CRISPR–Cas9 system. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.01663 DOI: https://doi.org/10.3389/fpls.2019.01663

Zhang, A., Liu, Y., Wang, F., Li, T., Chen, Z., Kong, D., Bi, J., et al. (2019). Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Molecular Breeding, 39, 47. https://doi.org/10.1007/s11032-019-0954-y DOI: https://doi.org/10.1007/s11032-019-0954-y

Zhang, Y., Bai, Y., Wu, G., Zou, S., Chen, Y., Gao, C., & Tang, D. (2017). Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. The Plant Journal, 91(4), 714–724. https://doi.org/10.1111/tpj.13599 DOI: https://doi.org/10.1111/tpj.13599

Zhu, L., Di, R., Huang, Z., Lu, M., Yin, L., Huang, Y., Wang, C., et al. (2024). Cas-mCfLAMP: A multiplex rapid visualization assay for sugarcane pathogens based on labeled LAMP and CRISPR/Cas12a. Microchemical Journal, 199, 109993. https://doi.org/10.1016/j.microc.2024.109993 DOI: https://doi.org/10.1016/j.microc.2024.109993

Downloads

Publicado

23-12-2024

Como Citar

Alvares, K. V., Silva, J. F. D., & Oliveira, C. L. B. D. (2024). Shaping agricultural future: a comprehensive review on crispr technology applications in agriculture. Revista Brasileira De Engenharia De Biossistemas, 18. https://doi.org/10.18011/bioeng.2024.v18.1227

Edição

Seção

Regular Section