Modeling the evaluation of methods for determining the basic density of wood in forest species based on data from a neuro-fuzzy inference system

Authors

  • Emmanuel Zullo Godinho Department of Exact Sciences, Sacred Heart University Center (UNISAGRADO), City of Bauru, Brazil. https://orcid.org/0000-0001-5281-6608
  • Ricardo Marques Barreiros Department of Forest Science, São Paulo State University (FCA UNESP), City of Botucatu, Brazil https://orcid.org/0000-0002-0363-6800
  • Matheus Augusto Santos Antoniazzi Department of Exact Sciences, Sacred Heart University Center (UNISAGRADO), City of Bauru, Brazil https://orcid.org/0009-0009-3695-7692
  • Caetano Dartiere Zulian Fermino Department of Exact Sciences, Sacred Heart University Center (UNISAGRADO), City of Bauru, Brazil https://orcid.org/0000-0001-6762-6794

DOI:

https://doi.org/10.18011/bioeng.2024.v18.1226

Keywords:

ANFIS, Agriculture, Artificial Neural Network, Agroforestry, Modeling

Abstract

The forestry sector is one of the agribusiness sectors that generates the most wealth for the national economy, as it brings benefits to society, from the wood itself for industries, biomass for energy production, and to the environment, reducing pressure on native forests and the reuse of land degraded by agriculture. In view of this, this study was carried out to predict the different basic densities in tree species under the influence of two factors, nine different tree species in relation to three different density methodologies using the Neuro-Fuzzy System. Tree basic density modeling was carried out using effective species parameters and different calculation methodologies adapted to the Neuro-Fuzzy Inference System (ANFIS). In the ANFIS model, 67% and 33% of the total data were considered as training and test data, respectively. The numbers of pertinence functions were selected 9 for species and 3 for methodologies for the input data. ANFIS training was carried out using the hybrid method. The average R2 determination coefficients were 87.32% and 97.42% for the field and ANFIS models, respectively. The model obtained using ANFIS showed a high accuracy of 4.36%. Compared to the field data, the ANFIS model was highly accurate and can be used to estimate the basic density of the trees in this study.

Downloads

Download data is not yet available.

References

Adedeji, P. A., Akinlabi, S. A., Madushele, N., & Olatunji, O. O. (2020). Neuro-fuzzy resource forecast in site suitability assessment for wind and solar energy: A mini review. Journal of Cleaner Production, 269, 122104. https://doi.org/10.1016/j.jclepro.2020.122104 DOI: https://doi.org/10.1016/j.jclepro.2020.122104

Alves, R. C., Oliveira, A. L. C., & Carrasco, E. V. M. (2017). Propriedades Físicas da Madeira de Eucalyptus cloeziana F. Muell. Floresta e Ambiente, 24. https://doi.org/10.1590/2179-8087.015312 DOI: https://doi.org/10.1590/2179-8087.015312

Anh, N., Prasad, M., Srikanth, N., & Sundaram, S. (2018). Wind Speed Intervals Prediction using Meta-cognitive Approach. Procedia Computer Science, 144, 23–32. https://doi.org/10.1016/j.procs.2018.10.501 DOI: https://doi.org/10.1016/j.procs.2018.10.501

Benin, C. C., Watzlawick, L. F., & Hillig, É. (2017) Physical and mechanical properties of Eucalyptus benthamii wood under the effect of the planting spacing. Ciência Florestal, 27, 1375–1384. https://doi.org/10.5902/1980509830219 DOI: https://doi.org/10.5902/1980509830219

Huang, H., Band, S. S., Karami, H., Ehteram, M., Chau, K., & Zhang, Q. (2022). Solar radiation prediction using improved soft computing models for semi-arid, slightly-arid and humid climates. Alexandria Engineering Journal, 61, 10631–10657. https://doi.org/10.1016/j.aej.2022.03.078 DOI: https://doi.org/10.1016/j.aej.2022.03.078

Landin, M. (2017). Artificial Intelligence Tools for Scaling Up of High Shear Wet Granulation Process. Journal of Pharmaceutical Sciences, 106, 273–277. https://doi.org/10.1016/j.xphs.2016.09.022 DOI: https://doi.org/10.1016/j.xphs.2016.09.022

Madhu, P., Sowmya Dhanalakshmi, C., & Mathew, M. (2020). Multi-criteria decision-making in the selection of a suitable biomass material for maximum bio-oil yield during pyrolysis. Fuel, 277. https://doi.org/10.1016/j.fuel.2020.118109 DOI: https://doi.org/10.1016/j.fuel.2020.118109

Moutinho, V. H. P., Filho, M. T., Brito, J. O., Ballarin, A. W., Andrade, F. W. C., & Cardoso, C. D. C. (2017). Caracterização e correlação estatística entre as propriedades físicas e mecânicas do carvão de clones de eucalyptus e corymbia. Ciência Florestal, 27, 1095–1103. https://doi.org/10.5902/1980509828684 DOI: https://doi.org/10.5902/1980509828684

Nardez, N. de N., Krueger, C. P., Jafelice, R. S. da M., & Schmidt, M. A. R. (2018). Obtenção dos parâmetros horizontais do PCO de antenas GNSS por meio de sistemas baseado em regras fuzzy. Boletim de Ciências Geodésicas, 24, 367–382. https://doi.org/10.1590/s1982-21702018000300024 DOI: https://doi.org/10.1590/s1982-21702018000300024

Nassef, A. M., Sayed, E. T., Rezk, H., Inayat, A., Yousef, B. A. A., Abdelkareem, M. A., & Olabi, A. G. (2020). Developing a fuzzy-model with particle swarm optimization-based for improving the conversion and gasification rate of palm kernel shell. Renew. Energy, 166, 125–135. https://doi.org/10.1016/j.renene.2020.11.037 DOI: https://doi.org/10.1016/j.renene.2020.11.037

Rousseau-Figueroa, P. A., Ramírez-Hernández, J., Infante-Prieto, S. O., Villa-Angulo, R., & Hallack-Alegría, M. (2016). La influencia del efecto de borde en el pronóstico de precipitaciones utilizando DWT diádica, MODWT, ANN y ANFIS TT. Tecnología Y Ciencias Del Agua, 7(3), 93–113.

Santos, J. R. F., Sousa, B. M. L., Fagundes, J. L., Backes, A. A., Silva, J. W. T., Andrade, G. S., Santos, A. L. H., Florencio, R. S. R., & Silva, V. C. (2021). Establishment of paiaguas palisadegrass in monoculture or in an integration system with other crops. Ciência Animal, 22. https://doi.org/10.1590/1809-6891V22E-68211 DOI: https://doi.org/10.1590/1809-6891v22e-68211

Shaban, W. M., Yang, J., Elbaz, K., Xie, J., & Li, L. (2021). Fuzzy-metaheuristic ensembles for predicting the compressive strength of brick aggregate concrete. Resources, Conservation and Recycling, 169, 105443. https://doi.org/10.1016/j.resconrec.2021.105443 DOI: https://doi.org/10.1016/j.resconrec.2021.105443

Silva, M. C. C., Andreotti, M., Costa, N. R., Lima, C. G. da R., & Pariz, C. M. (2017) Soil physical attributes and yield of winter common bean crop under a no-till system in the Brazilian Cerrado. Revista Caatinga, 30, 155–163. https://doi.org/10.1590/1983-21252017V30N117RC DOI: https://doi.org/10.1590/1983-21252017v30n117rc

Silveira, L. H. C., Rezende, A. V., & Vale, A. T. do (2013). Teor de umidade e densidade básica da madeira de nove espécies comerciais Amazônicas. Acta Amazonica, 43, 179–184. https://doi.org/10.1590/S0044-59672013000200007 DOI: https://doi.org/10.1590/S0044-59672013000200007

Vasaki E, M., Karri, R. R., Ravindran, G., & Paramasivan, B. (2021). Predictive capability evaluation and optimization of sustainable biodiesel production from oleaginous biomass grown on pulp and paper industrial wastewater. Renew. Energy, 168, 204–215. https://doi.org/10.1016/j.renene.2020.12.038 DOI: https://doi.org/10.1016/j.renene.2020.12.038

Vivian, M. A., Cardoso, A. S., Modes, K. S., & da Silva Júnior, F. G. (2022). Evaluation of the potential of Pinus greggii wood for pulp production. Rev. Ciências Agroveterinárias, 21, 56–65. https://doi.org/10.5965/223811712112022056 DOI: https://doi.org/10.5965/223811712112022056

Downloads

Published

2024-12-17

How to Cite

Zullo Godinho, E., Marques Barreiros, R., Santos Antoniazzi, M. A., & Dartiere Zulian Fermino, C. (2024). Modeling the evaluation of methods for determining the basic density of wood in forest species based on data from a neuro-fuzzy inference system. Revista Brasileira De Engenharia De Biossistemas, 18. https://doi.org/10.18011/bioeng.2024.v18.1226

Issue

Section

Regular Section